Modeling of Beta Diversity in Tunisian Waters: Predictions Using Generalized Dissimilarity Modeling and Bioregionalisation Using Fuzzy Clustering
نویسندگان
چکیده
Spatial patterns of beta diversity are a major focus of ecology. They can be especially valuable in conservation planning. In this study, we used a generalized dissimilarity modeling approach to analyze and predict the spatial patterns of beta diversity for commercially exploited, demersal marine species assemblages along the Tunisian coasts. For this study, we used a presence/absence dataset which included information on 174 species (invertebrates and fishes) and 9 environmental variables. We first performed the modeling analyses and assessed beta diversity using the turnover component of the Jaccard's dissimilarity index. We then performed nonmetric multidimensional scaling to map predicted beta diversity. To delineate the biogeographical regions, we used fuzzy cluster analysis. Finally, we also identified a set of indicator species which characterized the species assemblages in each identified biogeographical region. The predicted beta diversity map revealed two patterns: an inshore-offshore gradient and a south-north latitudinal gradient. Three biogeographical regions were identified and 14 indicator species. These results constitute a first contribution of the bioregionalisation of the Tunisian waters and highlight the issues associated with current fisheries management zones and conservation strategies. Results could be useful to follow an Ecosystem Based Management approach by proposing an objective spatial partitioning of the Tunisian waters. This partitioning could be used to prioritize the adjustment of the actual fisheries management entities, identify current data gaps, inform future scientific surveys and improve current MPA network.
منابع مشابه
Correction: Modeling of Beta Diversity in Tunisian Waters: Predictions Using Generalized Dissimilarity Modeling and Bioregionalisation Using Fuzzy Clustering
open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
متن کاملHysteresis Modeling, Identification and Fuzzy PID Control of SMA Wire Actuators Using Generalized Prandtl-Ishlinskii Model with Experimental Validation
In this paper, hysteretic behavior modeling, system identification and control of a mechanism that is actuated by shape memory alloy (SMA) wires are presented. The mechanism consists of two airfoil plates and the rotation angle between these plates can be changed by SMA wire actuators. This mechanism is used to identify the unknown parameters of a hysteresis model. Prandtl–Ishlinskii method is ...
متن کاملImprovement of Rule Generation Methods for Fuzzy Controller
This paper proposes fuzzy modeling using obtained data. Fuzzy system is known as knowledge-based or rule-bases system. The most important part of fuzzy system is rule-base. One of problems of generation of fuzzy rule with training data is inconsistence data. Existence of inconsistence and uncertain states in training data causes high error in modeling. Here, Probability fuzzy system presents to...
متن کاملA new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy
In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...
متن کاملDISTRIBUTED AND COLLABORATIVE FUZZY MODELING
In this study, we introduce and study a concept of distributed fuzzymodeling. Fuzzy modeling encountered so far is predominantly of a centralizednature by being focused on the use of a single data set. In contrast to this style ofmodeling, the proposed paradigm of distributed and collaborative modeling isconcerned with distributed models which are constructed in a highly collaborativefashion. I...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015